TY - JOUR
T1 - Spatial and Temporal Deep Learning in Air-Coupled Ultrasonic Testing for Enabling NDE 4.0
AU - Schmid, Simon
AU - Dürrmeier, Florian
AU - Grosse, Christian U.
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/9
Y1 - 2023/9
N2 - Air-coupled ultrasonic (ACU) testing has been used for several years to detect defects in plate-like structures. Especially, for automated testing procedures, ACU testing is advantageous in comparison to conventional testing. However, the evaluation of the measurement data is usually done in a manual manner, which is an obstruction to the application of ACU testing. The goal of this study is to automate and improve defect characterization and NDE 4.0 accordingly with deep learning. In conventional ACU testing the measurement data contains temporal (A-scans) and spatial (C-scans) information. Both data types are investigated in this study. For the A-scans, which represent time series data, neural network architectures tailored to such data types are applied. In addition, it is evaluated if further adaptions of the training procedure increase the performance. The C-scans are segmented by applying different U-net similar architectures and training strategies. In order to use spatial and temporal information, a further approach is taken. The prediction of the time series models is segmented with image models. The performance of all trained models and training strategies is compared with the F1-score and benchmarked against the conventional evaluation, which is thresholding of the C-scans. As specimens, artificial defects in acrylic and carbon fiber-reinforced polymer plates are investigated.
AB - Air-coupled ultrasonic (ACU) testing has been used for several years to detect defects in plate-like structures. Especially, for automated testing procedures, ACU testing is advantageous in comparison to conventional testing. However, the evaluation of the measurement data is usually done in a manual manner, which is an obstruction to the application of ACU testing. The goal of this study is to automate and improve defect characterization and NDE 4.0 accordingly with deep learning. In conventional ACU testing the measurement data contains temporal (A-scans) and spatial (C-scans) information. Both data types are investigated in this study. For the A-scans, which represent time series data, neural network architectures tailored to such data types are applied. In addition, it is evaluated if further adaptions of the training procedure increase the performance. The C-scans are segmented by applying different U-net similar architectures and training strategies. In order to use spatial and temporal information, a further approach is taken. The prediction of the time series models is segmented with image models. The performance of all trained models and training strategies is compared with the F1-score and benchmarked against the conventional evaluation, which is thresholding of the C-scans. As specimens, artificial defects in acrylic and carbon fiber-reinforced polymer plates are investigated.
KW - Air-coupled ultrasonic testing
KW - Deep learning
KW - NDE 4.0
KW - Spatial and temporal deep learning
UR - http://www.scopus.com/inward/record.url?scp=85170385960&partnerID=8YFLogxK
U2 - 10.1007/s10921-023-00993-3
DO - 10.1007/s10921-023-00993-3
M3 - Article
AN - SCOPUS:85170385960
SN - 0195-9298
VL - 42
JO - Journal of Nondestructive Evaluation
JF - Journal of Nondestructive Evaluation
IS - 3
M1 - 84
ER -