Sparsity and Privacy in Secret Sharing: A Fundamental Trade-Off

Rawad Bitar, Maximilian Egger, Antonia Wachter-Zeh, Marvin Xhemrishi

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

This work investigates the design of sparse secret sharing schemes that encode a sparse private matrix into sparse shares. This investigation is motivated by distributed computing, where the multiplication of sparse and private matrices is moved from a computationally weak main node to untrusted worker machines. Classical secret-sharing schemes produce dense shares. However, sparsity can help speed up the computation. We show that, for matrices with i.i.d. entries, sparsity in the shares comes at a fundamental cost of weaker privacy. We derive a fundamental tradeoff between sparsity and privacy and construct optimal sparse secret sharing schemes that produce shares that leak the minimum amount of information for a desired sparsity of the shares. We apply our schemes to distributed sparse and private matrix multiplication schemes with no colluding workers while tolerating stragglers. For the setting of two non-communicating clusters of workers, we design a sparse one-time pad so that no private information is leaked to a cluster of untrusted and colluding workers, and the shares with bounded but non-zero leakage are assigned to a cluster of partially trusted workers. We conclude by discussing the necessity of using permutations for matrices with correlated entries.

Original languageEnglish
Pages (from-to)5136-5150
Number of pages15
JournalIEEE Transactions on Information Forensics and Security
Volume19
DOIs
StatePublished - 2024

Keywords

  • Sparse private matrix multiplication
  • information-theoretic privacy
  • optimal leakage
  • straggler tolerance

Fingerprint

Dive into the research topics of 'Sparsity and Privacy in Secret Sharing: A Fundamental Trade-Off'. Together they form a unique fingerprint.

Cite this