Sparse-sampling computed tomography for pulmonary imaging

Felix K. Kopp, Kai Mei, Ernst J. Rummeny, Peter B. Noël

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Computed tomography (CT) is a valuable imaging modality for pulmonary imaging. Fast acquisition times and sharp cross-sectional images guarantee high diagnostic confidence. With the introduction of low-dose CT, it has been established as standard for lung screening of heavy smokers in many countries around the world. However, at some point the limits for dose reduction with conventional CT are reached and further reduction would suffer from poor image quality. Sparsesampling CT is one technology that would allow a further radiation dose reduction by reducing the number of acquired projection images. Recently, the feasibility of a fast pulsing X-ray tube for CT has been demonstrated, indicating that sparse sampling could become available in future generations of CT scanners. Therefore, we investigated the effect of sparse sampling by a stepwise reduction of the projection images. A lung phantom with synthetic pulmonary nodules was scanned with a clinical CT system. Sparse sampling was simulated by removing projection images prior to reconstruction. The phantom was scanned at the iso-center and at the highest possible table position (off-center). The modulation transfer function (MTF) was determined for different degrees of sparse sampling. Image quality was evaluated by comparing the reduced dose simulations against the full dose image using the structural similarity index (SSIM). MTF was stable down to using 1/4th of the projection images (4-times sparse sampling, SpS-4) with high degradation at the off-center position (full sampling (FS) 10% MTF, iso-center: 0.64; off-center: 0.47). SSIM indicates a small image quality degradation of FS images compared to sparse-sampling images at low radiation doses at the iso-center (35 mAs; FS: 0.91; SpS-4: 0.93) and stronger degradations at the off-center position (35 mAs; FS: 0.65; SpS-4: 0.84). In conclusion, sparse sampling provides stable MTF results down to 1/4th of the projection images. At low dose levels (iso-center: ≤43 mAs; off-center: ≤86 mAs), sparse sampling performs better in terms of SSIM compared to FS.

Original languageEnglish
Title of host publicationMedical Imaging 2019
Subtitle of host publicationPhysics of Medical Imaging
EditorsTaly Gilat Schmidt, Guang-Hong Chen, Hilde Bosmans
PublisherSPIE
ISBN (Electronic)9781510625433
DOIs
StatePublished - 2019
EventMedical Imaging 2019: Physics of Medical Imaging - San Diego, United States
Duration: 17 Feb 201920 Feb 2019

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10948
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2019: Physics of Medical Imaging
Country/TerritoryUnited States
CitySan Diego
Period17/02/1920/02/19

Keywords

  • Computed tomography
  • Pulmonary imaging
  • Radiation dose reduction
  • Sparse-sampling CT
  • Ultra-low dose

Fingerprint

Dive into the research topics of 'Sparse-sampling computed tomography for pulmonary imaging'. Together they form a unique fingerprint.

Cite this