TY - GEN
T1 - Sparse Annotation Strategies for Segmentation of Short Axis Cardiac MRI
AU - Stein, Josh
AU - Di Folco, Maxime
AU - Schnabel, Julia A.
N1 - Publisher Copyright:
© 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2024
Y1 - 2024
N2 - Short axis cardiac MRI segmentation is a well-researched topic, with excellent results achieved by state-of-the-art models in a supervised setting. However, annotating MRI volumes is time-consuming and expensive. Many different approaches (e.g. transfer learning, data augmentation, few-shot learning, etc.) have emerged in an effort to use fewer annotated data and still achieve similar performance as a fully supervised model. Nevertheless, to the best of our knowledge, none of these works focus on which slices of MRI volumes are most important to annotate for yielding the best segmentation results. In this paper, we investigate the effects of training with sparse volumes, i.e. reducing the number of cases annotated, and sparse annotations, i.e. reducing the number of slices annotated per case. We evaluate the segmentation performance using the state-of-the-art nnU-Net model on two public datasets to identify which slices are the most important to annotate. We have shown that training on a significantly reduced dataset (48 annotated volumes) can give a Dice score greater than 0.85 and results comparable to using the full dataset (160 and 240 volumes for each dataset respectively). In general, training on more slice annotations provides more valuable information compared to training on more volumes. Further, annotating slices from the middle of volumes yields the most beneficial results in terms of segmentation performance, and the apical region the worst. When evaluating the trade-off between annotating volumes against slices, annotating more slices than volumes is a better strategy.
AB - Short axis cardiac MRI segmentation is a well-researched topic, with excellent results achieved by state-of-the-art models in a supervised setting. However, annotating MRI volumes is time-consuming and expensive. Many different approaches (e.g. transfer learning, data augmentation, few-shot learning, etc.) have emerged in an effort to use fewer annotated data and still achieve similar performance as a fully supervised model. Nevertheless, to the best of our knowledge, none of these works focus on which slices of MRI volumes are most important to annotate for yielding the best segmentation results. In this paper, we investigate the effects of training with sparse volumes, i.e. reducing the number of cases annotated, and sparse annotations, i.e. reducing the number of slices annotated per case. We evaluate the segmentation performance using the state-of-the-art nnU-Net model on two public datasets to identify which slices are the most important to annotate. We have shown that training on a significantly reduced dataset (48 annotated volumes) can give a Dice score greater than 0.85 and results comparable to using the full dataset (160 and 240 volumes for each dataset respectively). In general, training on more slice annotations provides more valuable information compared to training on more volumes. Further, annotating slices from the middle of volumes yields the most beneficial results in terms of segmentation performance, and the apical region the worst. When evaluating the trade-off between annotating volumes against slices, annotating more slices than volumes is a better strategy.
KW - Cardiac MRI
KW - Segmentation
KW - Sparse annotations
UR - http://www.scopus.com/inward/record.url?scp=85186637541&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-52448-6_7
DO - 10.1007/978-3-031-52448-6_7
M3 - Conference contribution
AN - SCOPUS:85186637541
SN - 9783031524479
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 66
EP - 76
BT - Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers - 14th International Workshop, STACOM 2023, Held in Conjunction with MICCAI 2023, Revised Selected Papers
A2 - Camara, Oscar
A2 - Puyol-Antón, Esther
A2 - Suinesiaputra, Avan
A2 - Young, Alistair
A2 - Sermesant, Maxime
A2 - Tao, Qian
A2 - Wang, Chengyan
PB - Springer Science and Business Media Deutschland GmbH
T2 - 14th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2023 held in Conjunction with MICCAI 2023
Y2 - 12 October 2023 through 12 October 2023
ER -