SPARF: Large-Scale Learning of 3D Sparse Radiance Fields from Few Input Images

Abdullah Hamdi, Bernard Ghanem, Matthias Nießner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Recent advances in Neural Radiance Fields (NeRFs) treat the problem of novel view synthesis as Sparse Radiance Field (SRF) optimization using sparse voxels for efficient and fast rendering [14], [43]. In order to leverage machine learning and adoption of SRFs as a 3D representation, we present SPARF, a large-scale ShapeNet-based synthetic dataset for novel view synthesis consisting of ∼17 million images rendered from nearly 40,000 shapes at high resolution (400 × 400 pixels). The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis and includes more than one million 3D-optimized radiance fields with multiple voxel resolutions. Furthermore, we propose a novel pipeline (SuRFNet) that learns to generate sparse voxel radiance fields from only few views. This is done by using the densely collected SPARF dataset and 3D sparse convolutions. SuRFNet employs partial SRFs from few/one images and a specialized SRF loss to learn to generate high-quality sparse voxel radiance fields that can be rendered from novel views. Our approach achieves state-of-the-art results in the task of unconstrained novel view synthesis based on few views on ShapeNet as compared to recent baselines. The SPARF dataset is made public with the code and models on the project website abdullahamdi.com/sparf.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2922-2932
Number of pages11
ISBN (Electronic)9798350307443
DOIs
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings - 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

Keywords

  • 3D radiance fields, multi view, 3D retrieval, NeRF, sparse voxels, Neural Radiance Fields

Fingerprint

Dive into the research topics of 'SPARF: Large-Scale Learning of 3D Sparse Radiance Fields from Few Input Images'. Together they form a unique fingerprint.

Cite this