Abstract
During strategic network design, not only strategic but also operational decisions must be made long before a production network is put into operation. These include determining the location and size of inventories within the production network and setting operational parameters for production lines, such as the shift model. However, the large solution space comprising a high number of highly uncertain design parameters makes these decisions challenging without decision support. Therefore, data farming offers a potential solution, as synthetic data can be generated via the execution of multiple simulation experiments spanning the solution space and then analyzed using data mining techniques to provide data-based decision support. However, data farming has not yet been applied to strategic network design due to the lack of adequate solution space management. To address this shortcoming, this paper presents a structured solution space management approach that integrates production network-specific requirements and Design of Experiment (DoE) methods. The approach enables converting the solution space in strategic network design into individual input data sets for simulation experiments, generating a comprehensive database that can be mined for data-based decision support. The applicability and validity of the comprehensive approach are ensured via a case study in the automotive industry.
Original language | English |
---|---|
Article number | 8604 |
Journal | Applied Sciences (Switzerland) |
Volume | 13 |
Issue number | 15 |
DOIs | |
State | Published - Aug 2023 |
Keywords
- data farming
- design of experiments
- production network simulation
- production networks
- solution space management
- strategic network design
- value stream