Solid-state NMR spectroscopy

Bernd Reif, Sharon E. Ashbrook, Lyndon Emsley, Mei Hong

Research output: Contribution to journalReview articlepeer-review

198 Scopus citations

Abstract

Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method to determine the chemical structure, 3D structure and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR spectroscopy as applied to the wide range of solid systems. The nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins in solid-state NMR are the same as in liquid-state NMR spectroscopy. However, because of the orientation dependence of the nuclear spin interactions in the solid state, the majority of high-resolution solid-state NMR spectra are measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials and inorganic solids. Continuing development of sensitivity-enhancement NMR approaches, including1H-detected fast MAS experiments, dynamic nuclear polarization and experiments in ultra-high magnetic fields, is described. We highlight recent applications of solid-state NMR spectroscopy to biological and materials chemistry. The Primer ends with a discussion of current limitations as well as areas of development of solid-state NMR spectroscopy and points to emerging areas of applications of this sophisticated spectroscopy.

Original languageEnglish
Article number2
JournalNature Reviews Methods Primers
Volume1
Issue number1
DOIs
StatePublished - Dec 2021

Fingerprint

Dive into the research topics of 'Solid-state NMR spectroscopy'. Together they form a unique fingerprint.

Cite this