SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

Yan Di, Fabian Manhardt, Gu Wang, Xiangyang Ji, Nassir Navab, Federico Tombari

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

76 Scopus citations

Abstract

Directly regressing all 6 degrees-of-freedom (6DoF) for the object pose (i.e. the 3D rotation and translation) in a cluttered environment from a single RGB image is a challenging problem. While end-to-end methods have recently demonstrated promising results at high efficiency, they are still inferior when compared with elaborate PnP/RANSACbased approaches in terms of pose accuracy. In this work, we address this shortcoming by means of a novel reasoning about self-occlusion, in order to establish a two-layer representation for 3D objects which considerably enhances the accuracy of end-to-end 6D pose estimation. Our framework, named SO-Pose, takes a single RGB image as input and respectively generates 2D-3D correspondences as well as self-occlusion information harnessing a shared encoder and two separate decoders. Both outputs are then fused to directly regress the 6DoF pose parameters. Incorporating cross-layer consistencies that align correspondences, self-occlusion and 6D pose, we can further improve accuracy and robustness, surpassing or rivaling all other state-of-the-art approaches on various challenging datasets.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages12376-12385
Number of pages10
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation'. Together they form a unique fingerprint.

Cite this