Smoothed Motion Complexity

Valentina Damerow, Friedhelm Meyer Auf Der Heide, Harald Räcke, Christian Scheideier, Christian Sohler

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

15 Scopus citations

Abstract

We propose a new complexity measure for movement of objects, the smoothed motion complexity. Many applications are based on algorithms dealing with moving objects, but usually data of moving objects is inherently noisy due to measurement errors. Smoothed motion complexity considers this imprecise information and uses smoothed analysis [13] to model noisy data. The input is object to slight random perturbation and the smoothed complexity is the worst case expected complexity over all inputs w.r.t. the random noise. We think that the usually applied worst case analysis of algorithms dealing with moving objects, e.g., kinetic data structures, often does not reflect the real world behavior and that smoothed motion complexity is much better suited to estimate dynamics. We illustrate this approach on the problem of maintaining an orthogonal bounding box of a set of n points in ℝd under linear motion. We assume speed vectors and initial positions from [-1, 1]d. The motion complexity is then the number of combinatorial changes to the description of the bounding box. Under perturbation with Gaussian normal noise of deviation a the smoothed motion complexity is only polylogarithmic: O(d · (1 + 1/σ) · log n3/2) and Ω(d ·√log n). We also consider the case when only very little information about the noise distribution is known. We assume that the density function is monotonically increasing on ℝ≤0 and monotonically decreasing on ℝ≤0 and bounded by some value C. Then the motion complexity is O(√n log n · C + log n) and Ω(d · min{ 5√n/σ, n}). Keywords: Randomization, Kinetic Data Structures, Smoothed Analysis

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsGiuseppe di Battista, Uri Zwick
PublisherSpringer Verlag
Pages161-171
Number of pages11
ISBN (Print)3540200649, 9783540200642
DOIs
StatePublished - 2003
Externally publishedYes

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume2832
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'Smoothed Motion Complexity'. Together they form a unique fingerprint.

Cite this