Smart antimicrobial efficacy employing pH-sensitive ZnO-doped diamond-like carbon coatings

Sascha Buchegger, Andrej Kamenac, Sven Fuchs, Rudolf Herrmann, Pia Houdek, Christian Gorzelanny, Andreas Obermeier, Stephan Heller, Rainer Burgkart, Bernd Stritzker, Achim Wixforth, Christoph Westerhausen

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

One of the main challenges in endoprosthesis surgeries are implant-associated infections and aseptic-loosenings, caused by wear debris. To combat these problems, the requirements to surfaces of endoprostheses are wear-resistance, low cytotoxicity and antimicrobial efficacy. We here present antimicrobial coatings with a smart, adaptive release of metal ions in case of infection, based on ZnO-nanoparticles embedded in diamond-like carbon (DLC). The Zn2+ ion release of these coatings in aqueous environments reacts and adapts smartly on inflammations accompanied by acidosis. Moreover, we show that this increased ion release comes along with an increased toxicity to fibroblastic cells (L929) and bacteria (Staphylococcus aureus subsp. aureus, resistant to methicillin and oxacillin. (ATCC 43300, MRSA) and Staphylococcus epidermidis (ATCC 35984, S. epidermidis). Interestingly, the antimicrobial effect and the cytotoxicity of the coatings increase with a reduction of the pH value from 7.4 to 6.4, but not further to pH 5.4.

Original languageEnglish
Article number17246
JournalScientific Reports
Volume9
Issue number1
DOIs
StatePublished - 1 Dec 2019

Fingerprint

Dive into the research topics of 'Smart antimicrobial efficacy employing pH-sensitive ZnO-doped diamond-like carbon coatings'. Together they form a unique fingerprint.

Cite this