TY - JOUR
T1 - Simultaneous and Efficient Removal of Oleophilic and Hydrophilic Stains from Polyurethane by the Combination of Easy-Cleaning and Self-Cleaning
AU - Fang, Zheng
AU - Zhang, Junfeng
AU - Yan, Xuefeng
AU - Hu, Lizhen
AU - Lei, Lin
AU - Fan, Huiqing
AU - Wang, Weijia
AU - Müller-Buschbaum, Peter
AU - Zhong, Qi
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/4/13
Y1 - 2022/4/13
N2 - The simultaneous and efficient removal of oleophilic and hydrophilic stains from polyurethane (PU) is realized by combining the easy-cleaning from the hydrophilic thermoresponsive hydrogel coating containing acrylamide (AAm), gum arabic (GA), and (ethylene glycol) methyl ether methacrylate (OEGMA300) P(GA/AAm/OEGMA300) and the self-cleaning from the embedded nonmetallic photocatalyst g-C3N4. Due to the existence of strong hydrogen bonds between the hydroxyl groups in the hybrid hydrogel coating and the hydroxyl/carboxyl groups in the plasma-treated PU, the hybrid hydrogel coating is very stable on PU. Simultaneously, the acrylamide network in the hybrid hydrogel coating enhances its mechanical strength. Because the transition temperature of OEGMA300is well above the room temperature, the cross-linked coating remains hydrophilic in ambient conditions. Thus, oleophilic stains, such as oil and grease, can be easily removed from the coating surface. In addition, the embedded photocatalyst g-C3N4in the hybrid hydrogel coating introduces the extra capability of decomposing organic compounds under sunshine, which favors the removal of hydrophilic stains such as dyes and wines. After sunlight illumination and simply rinsing with water, both hydrophilic and oleophilic stains can be easily removed. Moreover, this joint cleaning performance can work for a long time. Even after four consecutive cycles, both the easy-cleaning to oleophilic stains by the hydrophilic hydrogel surface and self-cleaning to the hydrophilic stains by the embedded g-C3N4remain unchanged.
AB - The simultaneous and efficient removal of oleophilic and hydrophilic stains from polyurethane (PU) is realized by combining the easy-cleaning from the hydrophilic thermoresponsive hydrogel coating containing acrylamide (AAm), gum arabic (GA), and (ethylene glycol) methyl ether methacrylate (OEGMA300) P(GA/AAm/OEGMA300) and the self-cleaning from the embedded nonmetallic photocatalyst g-C3N4. Due to the existence of strong hydrogen bonds between the hydroxyl groups in the hybrid hydrogel coating and the hydroxyl/carboxyl groups in the plasma-treated PU, the hybrid hydrogel coating is very stable on PU. Simultaneously, the acrylamide network in the hybrid hydrogel coating enhances its mechanical strength. Because the transition temperature of OEGMA300is well above the room temperature, the cross-linked coating remains hydrophilic in ambient conditions. Thus, oleophilic stains, such as oil and grease, can be easily removed from the coating surface. In addition, the embedded photocatalyst g-C3N4in the hybrid hydrogel coating introduces the extra capability of decomposing organic compounds under sunshine, which favors the removal of hydrophilic stains such as dyes and wines. After sunlight illumination and simply rinsing with water, both hydrophilic and oleophilic stains can be easily removed. Moreover, this joint cleaning performance can work for a long time. Even after four consecutive cycles, both the easy-cleaning to oleophilic stains by the hydrophilic hydrogel surface and self-cleaning to the hydrophilic stains by the embedded g-C3N4remain unchanged.
KW - easy-cleaning
KW - hydrogel coating
KW - photocatalyst
KW - polyurethane
KW - self-cleaning
UR - http://www.scopus.com/inward/record.url?scp=85128177628&partnerID=8YFLogxK
U2 - 10.1021/acsami.2c01042
DO - 10.1021/acsami.2c01042
M3 - Article
C2 - 35377589
AN - SCOPUS:85128177628
SN - 1944-8244
VL - 14
SP - 16641
EP - 16648
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 14
ER -