Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO 2 capture

Andrej Lotrič, Mihael Sekavčnik, Christian Kunze, Hartmut Spliethoff

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The effectiveness of energy conversion and carbon dioxide sequestration in Integrated Gasification Combined Cycle (IGCC) is highly dependent on the syngas composition and its further processing. Water gas shift membrane reactor (WGSMR) enables a promising way of syngas-to-hydrogen conversion with favourable carbon dioxide sequestration capabilities. This paper deals with a numerical approach to the modelling of a water gas shift reaction (WGSR) in a membrane reactor which promotes a reaction process by selectively removing hydrogen from the reaction zone through the membrane, making the reaction equilibrium shifting to the product side. Modelling of the WGSR kinetics was based on Bradford mechanism which was used to develop a code within Mathematica programming language to simulate the chemical reactions. The results were implemented as initial and boundary conditions for the tubular WGSMR model designed with Aspen Plus software to analyze the broader system behaviour. On the basis of selected boundary conditions the designed base case model predicts that 89.1% CO conversion can be achieved. Calculations show that more than 70% of carbon monoxide conversion into hydrogen appears along the first 40% of reactor length scale. For isothermal conditions more than two thirds of the heat released by WGSR should be extracted from the first 20% of the reactor length. Sensitivity analysis of the WGSMR was also performed by changing the membrane's permeance and surface area.

Original languageEnglish
Pages (from-to)911-926
Number of pages16
JournalStrojniski Vestnik/Journal of Mechanical Engineering
Volume57
Issue number12
DOIs
StatePublished - 2011

Keywords

  • IGCC
  • Membrane reactor
  • Water-gas shift reaction

Fingerprint

Dive into the research topics of 'Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO 2 capture'. Together they form a unique fingerprint.

Cite this