Simulation of the transient response of a helicopter turboshaft engine to hot-gas ingestion

Gülru Koçer, Oǧuz Uzol, IIkay Yavrucuk

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Hot-Gas Ingestion (HGI) to the engines can potentially occur when a rotorcraft or a VTOL/STOVL fixed-wing aircraft is operating in close proximity to the ground. Especially for helicopters, due to the rotor downwash hot exhaust gases get recirculated into the engine inlet. Similar conditions may also occur due to the ingestion of hot exhaust gases from rocket launchers or gun fire. In this study, we present the results of a simulation of the transient response of a helicopter turboshaft engine to HGI. Specifically for this study we will present the results for the T800-LHT-800 turboshaft engine. The simulations are performed using an in-house generic simulation code based on an aerothermal model, which consists of the governing equations representing the aero-thermodynamic process of each engine component. The algorithm is composed of a set of differential equations and a set of non-linear algebraic equations which are solved numerically in a sequence. A simple proportional control algorithm is also incorporated into the simulation code, which acts as a simple speed governor. Simulation results show that the code has the potential to correctly capture the transient behaviour of a turboshaft engine under various HGI conditions, such as the reduction in the gas generator speed and the power levels as well as the decrease in the compressor surge margin. The code can also be used for developing engine control algorithms as well as health monitoring systems.

Original languageEnglish
Title of host publication2008 Proceedings of the ASME Turbo Expo
Subtitle of host publicationPower for Land, Sea, and Air
Pages257-262
Number of pages6
DOIs
StatePublished - 2008
Externally publishedYes
Event2008 ASME Turbo Expo - Berlin, Germany
Duration: 9 Jun 200813 Jun 2008

Publication series

NameProceedings of the ASME Turbo Expo
Volume2

Conference

Conference2008 ASME Turbo Expo
Country/TerritoryGermany
CityBerlin
Period9/06/0813/06/08

Fingerprint

Dive into the research topics of 'Simulation of the transient response of a helicopter turboshaft engine to hot-gas ingestion'. Together they form a unique fingerprint.

Cite this