Signal Clustering with Class-Independent Segmentation

Stefano Gasperini, Magdalini Paschali, Carsten Hopke, David Wittmann, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

Radar signals have been dramatically increasing in complexity, limiting the source separation ability of traditional approaches. In this paper we propose a Deep Learning-based clustering method, which encodes concurrent signals into images, and, for the first time, tackles clustering with image segmentation. Novel loss functions are introduced to optimize a Neural Network to separate the input pulses into pure and non-fragmented clusters. Outperforming a variety of baselines, the proposed approach is capable of clustering inputs directly with a Neural Network, in an end-to-end fashion.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3982-3986
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • Class-independence
  • Clustering
  • Deep Learning
  • Image Segmentation
  • Radar Signals

Fingerprint

Dive into the research topics of 'Signal Clustering with Class-Independent Segmentation'. Together they form a unique fingerprint.

Cite this