Shifting tree species composition affects biodiversity of multiple taxa in Central European forests

Jan Leidinger, Markus Blaschke, Michael Ehrhardt, Anton Fischer, Martin M. Gossner, Kirsten Jung, Sebastian Kienlein, Johanna Kózak, Barbara Michler, Reinhard Mosandl, Sebastian Seibold, Katja Wehner, Wolfgang W. Weisser

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


Central Europe's temperate forests are heavily shaped by centuries of human activity. Their natural vegetation, mainly consisting of beech-dominated (Fagus sylvatica) deciduous forests, has been widely replaced by more profitable species grown outside of their natural ranges. This has strongly influenced forest-dwelling communities. Necessary adaptations to changing climatic conditions and the increasing demand for forest ecosystem multifunctionality are reversing these shifts in tree species composition. Integrative approaches that seek to balance production and conservation goals promote mixed forests of beech with spruce (Picea abies), pine (Pinus sylvestris), or oak (Quercus spp.). These mixed forests more closely resemble the natural vegetation and have reduced vulnerability to disturbances compared to coniferous monocultures, but higher commercial value compared to pure beech forests. However, our understanding of how different levels of admixture of commercially relevant tree species to beech forests affect multi-trophic diversity and community composition remains limited. We investigated herbaceous plants, fungi, oribatid mites, springtails, true bugs, beetles, birds and bats in 41 mature forest stands differing in tree species composition. We assessed the effects of admixtures on abundances and alpha and gamma diversity, i.e. the total number of species per forest type, and a measure of multidiversity by comparing reference beech stands with stands containing varying proportions of admixed species. At the plot level, the proportion of admixtures was especially important regarding oak and pine. Increasing shares of oak positively affected birds, true bugs and herbivorous beetles. Increasing shares of pine benefitted herbivorous true bugs and understory plants but negatively affected other true bugs, bats, and litter-decomposing fungi. Spruce admixture resulted in higher saproxylic beetle and bird diversity. At the landscape level, admixture significantly increased gamma diversity in plants, mycorrhizal and litter decomposing fungi and herbivorous and saproxylic beetles. Only springtail gamma diversity decreased in the presence of admixture. Admixture also significantly altered community composition for six out of 13 taxa. Indicator species were found for all forest types, and seven species groups included species significantly associated with pure beech stands. Our results indicate that forestry decisions determine forest biodiversity across trophic levels via tree species composition, combining habitat heterogeneity effects and tree species-specific associations. Even low shares of admixed species affect local abundances and diversity. By displacing some species while benefitting others, admixing also alters community composition. This study provides a basis for estimating how altering tree species composition in Central European forests changes the diversity and composition of forest communities.

Original languageEnglish
Article number119552
JournalForest Ecology and Management
StatePublished - 15 Oct 2021


  • Beech forest
  • Fagus sylvatica
  • Forest structure
  • Integrative forest management
  • Mixed forest
  • Multidiversity


Dive into the research topics of 'Shifting tree species composition affects biodiversity of multiple taxa in Central European forests'. Together they form a unique fingerprint.

Cite this