Abstract
The pleiotropic cytokine IL-6 regulates numerous processes in the body, including neuronal functions. IL-6 either binds to membrane-bound receptor (mIL-6R) and triggers signaling via heteromerization with the signal transducer gp130 (classical signaling), or binds to its soluble form (sIL-6R) to act on cells that do not express mIL-6R (trans-signaling). The ß-secretase BACE1 can cleave gp130 as well as IL-6R and we hypothesized that BACE1 may alter neuron activity and synaptic transmission via modulation of IL-6 signaling. We used multielectrode array (MEA) recordings to monitor electrical activity of neuronal networks in acute cerebellar slices as well as long-term potentiation (LTP) induced by high-frequency stimulation in the hippocampus and to assess how exposure to IL-6 affects these processes. A pharmacological approach was applied to elucidate the contribution of trans-signaling involving BACE1. Spontaneous neuronal activity in cerebellar slices significantly decreased upon perfusion with IL-6 but not LIF and recovered during wash out. BACE1 inhibitors verubecestat or AZD3839 abolished the inhibitory effects of IL-6. Furthermore, IL-6 and LIF reversibly inhibited LTP in hippocampal slices, and in contrast to cerebellar neurons, BACE1 inhibitors verubecestat or AZD3839 did not abolish the inhibitory effect of IL-6 on LTP. Interestingly, a dramatic rebound effect on excitatory postsynaptic potentials was observed with BACE1 inhibitor AZD3839 but not verubecestat during wash out. Our results support relevant and differential roles of IL-6, LIF and BACE1 in pathways modulating neuronal discharge activity in the cerebellum and the synaptic plasticity in the hippocampus, and a possible involvement of this interaction in deficits of memory and learning.
Original language | English |
---|---|
Article number | 156925 |
Journal | Cytokine |
Volume | 190 |
DOIs | |
State | Published - Jun 2025 |
Keywords
- AZD3839
- BACE1
- gp130
- Interleukin-6
- Long-term potentiation
- Neuronal activity
- Verubecestat