Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks using the Marginal Likelihood

Rayen Dhahri, Alexander Immer, Betrand Charpentier, Stephan Günnemann, Vincent Fortuin

Research output: Contribution to journalConference articlepeer-review

Abstract

Neural network sparsification is a promising avenue to save computational time and memory costs, especially in an age where many successful AI models are becoming too large to naïvely deploy on consumer hardware. While much work has focused on different weight pruning criteria, the overall sparsifiability of the network, i.e., its capacity to be pruned without quality loss, has often been overlooked. We present Sparsifiability via the Marginal likelihood (SpaM), a pruning framework that highlights the effectiveness of using the Bayesian marginal likelihood in conjunction with sparsity-inducing priors for making neural networks more sparsifiable. Our approach implements an automatic Occam's razor that selects the most sparsifiable model that still explains the data well, both for structured and unstructured sparsification. In addition, we demonstrate that the pre-computed posterior precision from the Laplace approximation can be re-used to define a cheap pruning criterion, which outperforms many existing (more expensive) approaches. We demonstrate the effectiveness of our framework, especially at high sparsity levels, across a range of different neural network architectures and datasets.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: 9 Dec 202415 Dec 2024

Fingerprint

Dive into the research topics of 'Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks using the Marginal Likelihood'. Together they form a unique fingerprint.

Cite this