SGPCR: Spherical Gaussian Point Cloud Representation and its Application to Object Registration and Retrieval

Driton Salihu, Eckehard Steinbach

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Retrieving and aligning CAD models from databases with scanned real-world point clouds remains an important topic for 3D reconstruction. Due to zero point-to-point correspondences between the sampled CAD model and the scanned real-world object, an information-rich representation of point clouds is needed. We propose SGPCR, a novel method for representing 3D point clouds by Spherical Gaussians for efficient, stable, and rotation-equivariant representation. We also propose a rotation-invariant convolution to improve the representation quality through a trainable optimization process. In addition, we demonstrate the strengths of SGPCR-based point cloud representation using the fundamental challenge of shape retrieval and point cloud registration on point clouds with zero point-to-point correspondences. Under these conditions, our approach improves registration quality by reducing chamfer distance by up to 90% and rotation root mean square error by up to 86% compared to the state of the art. Furthermore, the proposed SGCPR is used for one-shot shape retrieval and registration and improves retrieval precision by up to 58% over comparable methods.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages572-581
Number of pages10
ISBN (Electronic)9781665493468
DOIs
StatePublished - 2023
Event23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, United States
Duration: 3 Jan 20237 Jan 2023

Publication series

NameProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

Conference

Conference23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
Country/TerritoryUnited States
CityWaikoloa
Period3/01/237/01/23

Keywords

  • Algorithms: 3D computer vision
  • Machine learning architectures
  • and algorithms (including transfer, low-shot, semi-, self-, and un-supervised learning)
  • formulations

Fingerprint

Dive into the research topics of 'SGPCR: Spherical Gaussian Point Cloud Representation and its Application to Object Registration and Retrieval'. Together they form a unique fingerprint.

Cite this