SeQuaiA: A Scalable Tool for Semi-Quantitative Analysis of Chemical Reaction Networks

Milan Češka, Calvin Chau, Jan Křetínský

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Chemical reaction networks (CRNs) play a fundamental role in analysis and design of biochemical systems. They induce continuous-time stochastic systems, whose analysis is a computationally intensive task. We present a tool that implements the recently proposed semi-quantitative analysis of CRN. Compared to the proposed theory, the tool implements the analysis so that it is more flexible and more precise. Further, its GUI offers a wide range of visualization procedures that facilitate the interpretation of the analysis results as well as guidance to refine the analysis. Finally, we define and implement a new notion of “mean” simulations, summarizing the typical behaviours of the system in a way directly comparable to standard simulations produced by other tools.

Original languageEnglish
Title of host publicationComputer Aided Verification - 32nd International Conference, CAV 2020, Proceedings
EditorsShuvendu K. Lahiri, Chao Wang
PublisherSpringer
Pages653-666
Number of pages14
ISBN (Print)9783030532871
DOIs
StatePublished - 2020
Event32nd International Conference on Computer Aided Verification, CAV 2020 - Los Angeles, United States
Duration: 21 Jul 202024 Jul 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12224 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference32nd International Conference on Computer Aided Verification, CAV 2020
Country/TerritoryUnited States
CityLos Angeles
Period21/07/2024/07/20

Fingerprint

Dive into the research topics of 'SeQuaiA: A Scalable Tool for Semi-Quantitative Analysis of Chemical Reaction Networks'. Together they form a unique fingerprint.

Cite this