TY - JOUR
T1 - Sensitivity analysis in the wavelet domain
T2 - a comparison study
AU - Chiogna, Gabriele
AU - Marcolini, Giorgia
AU - Engel, Michael
AU - Wohlmuth, Barbara
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/4
Y1 - 2024/4
N2 - Sensitivity analysis plays a pivotal role for the development and calibration of hydrological models, since they are often affected by equifinality. Despite a lot of effort has been placed for the development of effective sensitivity analysis methods, hydrological models remain over parametrized. We take advantage of the evidence that hydrological processes can be described as the superposition of effects occurring at different temporal scales (e.g., seasonal precipitation patterns, seasonal and daily snow and glacier melt, seasonal, daily and sub-daily water management operations) to develop a new framework to perform sensitivity analysis. We apply discrete and continuous wavelet transforms to disentangle hydrological signals occurring at different temporal scales and we take advantage of the different information stored at different temporal scales of the wavelet spectrum to perform a scale-dependent sensitivity analysis. This approach aims to increase the number of identifiable model parameters in comparison to standard sensitivity analysis performed in the time domain. As an exemplary problem, we apply the methodology to synthetic data describing surface water-groundwater interaction in rivers affected by hydropeaking (i.e., sudden fluctuations in the river stage due to hydropower production). The method could be applied also to other models displaying the superposition of processes with different intensities at different temporal scales such as ocean tide propagation in aquifers as well as snow and glacier melt models. The results indicate that considering multiple temporal scales allows us to increase the number of parameters that can be identified and hence calibrated with only a little increase in the computational effort.
AB - Sensitivity analysis plays a pivotal role for the development and calibration of hydrological models, since they are often affected by equifinality. Despite a lot of effort has been placed for the development of effective sensitivity analysis methods, hydrological models remain over parametrized. We take advantage of the evidence that hydrological processes can be described as the superposition of effects occurring at different temporal scales (e.g., seasonal precipitation patterns, seasonal and daily snow and glacier melt, seasonal, daily and sub-daily water management operations) to develop a new framework to perform sensitivity analysis. We apply discrete and continuous wavelet transforms to disentangle hydrological signals occurring at different temporal scales and we take advantage of the different information stored at different temporal scales of the wavelet spectrum to perform a scale-dependent sensitivity analysis. This approach aims to increase the number of identifiable model parameters in comparison to standard sensitivity analysis performed in the time domain. As an exemplary problem, we apply the methodology to synthetic data describing surface water-groundwater interaction in rivers affected by hydropeaking (i.e., sudden fluctuations in the river stage due to hydropower production). The method could be applied also to other models displaying the superposition of processes with different intensities at different temporal scales such as ocean tide propagation in aquifers as well as snow and glacier melt models. The results indicate that considering multiple temporal scales allows us to increase the number of parameters that can be identified and hence calibrated with only a little increase in the computational effort.
KW - Hydropeaking
KW - Periodogram efficiency criterion
KW - Sensitivity analysis
KW - Sobol index
KW - Surface water-groundwater interaction
KW - Wavelet
UR - http://www.scopus.com/inward/record.url?scp=85182237040&partnerID=8YFLogxK
U2 - 10.1007/s00477-023-02654-3
DO - 10.1007/s00477-023-02654-3
M3 - Article
AN - SCOPUS:85182237040
SN - 1436-3240
VL - 38
SP - 1669
EP - 1684
JO - Stochastic Environmental Research and Risk Assessment
JF - Stochastic Environmental Research and Risk Assessment
IS - 4
ER -