TY - GEN
T1 - Semi-on-Demand Transit Feeders with Shared Autonomous Vehicles and Reinforcement-Learning-Based Zonal Dispatching Control
AU - Ng, Max T.M.
AU - Engelhardt, Roman
AU - Dandl, Florian
AU - Mahmassani, Hani S.
AU - Bogenberger, Klaus
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - This paper develops a semi-on-demand transit feeder service using shared autonomous vehicles (SAVs) and zonal dispatching control based on reinforcement learning (RL). This service combines the cost-effectiveness of fixed-route transit with the adaptability of demand-responsive transport to improve accessibility in lower-density areas. Departing from the terminus, SAVs first make scheduled fixed stops, then offer on-demand pick-ups and drop-offs in a pre-determined flexible-route area. Our deep RL model dynamically assigns vehicles to subdivided flexible-route zones in response to real-time demand fluctuations and operations, using a policy gradient algorithm - Proximal Policy Optimization. The methodology is demonstrated through agent-based simulations on a real-world bus route in Munich, Germany. Results show that after efficient training of the RL model, the semi-on-demand service with dynamic zonal control serves 16% more passengers at 13% higher generalized costs on average compared to traditional fixed-route service. The efficiency gain brought by RL control brings 2.4% more passengers at 1.4% higher costs. This study not only showcases the potential of integrating SAV feeders and machine learning techniques into public transit, but also sets the groundwork for further innovations in addressing first-mile-last-mile problems in multimodal transit systems.
AB - This paper develops a semi-on-demand transit feeder service using shared autonomous vehicles (SAVs) and zonal dispatching control based on reinforcement learning (RL). This service combines the cost-effectiveness of fixed-route transit with the adaptability of demand-responsive transport to improve accessibility in lower-density areas. Departing from the terminus, SAVs first make scheduled fixed stops, then offer on-demand pick-ups and drop-offs in a pre-determined flexible-route area. Our deep RL model dynamically assigns vehicles to subdivided flexible-route zones in response to real-time demand fluctuations and operations, using a policy gradient algorithm - Proximal Policy Optimization. The methodology is demonstrated through agent-based simulations on a real-world bus route in Munich, Germany. Results show that after efficient training of the RL model, the semi-on-demand service with dynamic zonal control serves 16% more passengers at 13% higher generalized costs on average compared to traditional fixed-route service. The efficiency gain brought by RL control brings 2.4% more passengers at 1.4% higher costs. This study not only showcases the potential of integrating SAV feeders and machine learning techniques into public transit, but also sets the groundwork for further innovations in addressing first-mile-last-mile problems in multimodal transit systems.
UR - http://www.scopus.com/inward/record.url?scp=105001673347&partnerID=8YFLogxK
U2 - 10.1109/ITSC58415.2024.10920214
DO - 10.1109/ITSC58415.2024.10920214
M3 - Conference contribution
AN - SCOPUS:105001673347
T3 - IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
SP - 2863
EP - 2868
BT - 2024 IEEE 27th International Conference on Intelligent Transportation Systems, ITSC 2024
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 27th IEEE International Conference on Intelligent Transportation Systems, ITSC 2024
Y2 - 24 September 2024 through 27 September 2024
ER -