SemanticFusion: Dense 3D semantic mapping with convolutional neural networks

John McCormac, Ankur Handa, Andrew Davison, Stefan Leutenegger

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

450 Scopus citations

Abstract

Ever more robust, accurate and detailed mapping using visual sensing has proven to be an enabling factor for mobile robots across a wide variety of applications. For the next level of robot intelligence and intuitive user interaction, maps need to extend beyond geometry and appearance - they need to contain semantics. We address this challenge by combining Convolutional Neural Networks (CNNs) and a state-of-the-art dense Simultaneous Localization and Mapping (SLAM) system, ElasticFusion, which provides long-term dense correspondences between frames of indoor RGB-D video even during loopy scanning trajectories. These correspondences allow the CNN's semantic predictions from multiple view points to be probabilistically fused into a map. This not only produces a useful semantic 3D map, but we also show on the NYUv2 dataset that fusing multiple predictions leads to an improvement even in the 2D semantic labelling over baseline single frame predictions. We also show that for a smaller reconstruction dataset with larger variation in prediction viewpoint, the improvement over single frame segmentation increases. Our system is efficient enough to allow real-time interactive use at frame-rates of ≈25Hz.

Original languageEnglish
Title of host publicationICRA 2017 - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4628-4635
Number of pages8
ISBN (Electronic)9781509046331
DOIs
StatePublished - 21 Jul 2017
Externally publishedYes
Event2017 IEEE International Conference on Robotics and Automation, ICRA 2017 - Singapore, Singapore
Duration: 29 May 20173 Jun 2017

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2017 IEEE International Conference on Robotics and Automation, ICRA 2017
Country/TerritorySingapore
CitySingapore
Period29/05/173/06/17

Fingerprint

Dive into the research topics of 'SemanticFusion: Dense 3D semantic mapping with convolutional neural networks'. Together they form a unique fingerprint.

Cite this