Abstract
The fabrication and control of coordination compounds or architectures at well-defined interfaces is a thriving research domain with promise for various research areas, including single-site catalysis, molecular magnetism, light-harvesting, and molecular rotors and machines. To date, such systems have been realized either by grafting or depositing prefabricated metal-organic complexes or by protocols combining molecular linkers and single metal atoms at the interface. Here we report a different pathway employing metal-organic chemical vapor deposition, as exemplified by the reaction of meso-tetraphenylporphyrin derivatives on atomistically clean Ag(111) with a metal carbonyl precursor (Ru3(CO)12) under vacuum conditions. Scanning tunneling microscopy and X-ray spectroscopy reveal the formation of a meso-tetraphenylporphyrin cyclodehydrogenation product that readily undergoes metalation after exposure to the Ru-carbonyl precursor vapor and thermal treatment. The self-terminating porphyrin metalation protocol proceeds without additional surface-bound byproducts, yielding a single and thermally robust layer of Ru metalloporphyrins. The introduced fabrication scheme presents a new approach toward the realization of complex metal-organic interfaces incorporating metal centers in unique coordination environments.
Original language | English |
---|---|
Pages (from-to) | 4520-4526 |
Number of pages | 7 |
Journal | ACS Nano |
Volume | 7 |
Issue number | 5 |
DOIs | |
State | Published - 28 May 2013 |
Keywords
- chemical vapor deposition
- interfaces
- monolayers
- porphyrins
- silver surface
- surface chemistry