TY - GEN
T1 - Segmentation based particle filtering for real-time 2D object tracking
AU - Belagiannis, Vasileios
AU - Schubert, Falk
AU - Navab, Nassir
AU - Ilic, Slobodan
PY - 2012
Y1 - 2012
N2 - We address the problem of visual tracking of arbitrary objects that undergo significant scale and appearance changes. The classical tracking methods rely on the bounding box surrounding the target object. Regardless of the tracking approach, the use of bounding box quite often introduces background information. This information propagates in time and its accumulation quite often results in drift and tracking failure. This is particularly the case with the particle filtering approach that is often used for visual tracking. However, it always uses a bounding box around the object to compute features of the particle samples. Since this causes the drift, we propose to use segmentation for sampling. Relying on segmentation and computing the colour and gradient orientation histograms from these segmented particle samples allows the tracker to easily adapt to the object's deformations, occlusions, orientation, scale and appearance changes. We propose two particle sampling strategies based on segmentation. In the first, segmentation is done for every propagated particle sample, while in the second only the strongest particle sample is segmented. Depending on this decision there is obviously a trade-off between speed and performance. We perform an exhaustive quantitative evaluation on a number of challenging sequences and compare our method with the number of state-of-the-art methods previously evaluated on those sequences. The results we obtain outperform majority of the related work, both in terms of the performance and speed.
AB - We address the problem of visual tracking of arbitrary objects that undergo significant scale and appearance changes. The classical tracking methods rely on the bounding box surrounding the target object. Regardless of the tracking approach, the use of bounding box quite often introduces background information. This information propagates in time and its accumulation quite often results in drift and tracking failure. This is particularly the case with the particle filtering approach that is often used for visual tracking. However, it always uses a bounding box around the object to compute features of the particle samples. Since this causes the drift, we propose to use segmentation for sampling. Relying on segmentation and computing the colour and gradient orientation histograms from these segmented particle samples allows the tracker to easily adapt to the object's deformations, occlusions, orientation, scale and appearance changes. We propose two particle sampling strategies based on segmentation. In the first, segmentation is done for every propagated particle sample, while in the second only the strongest particle sample is segmented. Depending on this decision there is obviously a trade-off between speed and performance. We perform an exhaustive quantitative evaluation on a number of challenging sequences and compare our method with the number of state-of-the-art methods previously evaluated on those sequences. The results we obtain outperform majority of the related work, both in terms of the performance and speed.
UR - http://www.scopus.com/inward/record.url?scp=84867881463&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-33765-9_60
DO - 10.1007/978-3-642-33765-9_60
M3 - Conference contribution
AN - SCOPUS:84867881463
SN - 9783642337642
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 842
EP - 855
BT - Computer Vision, ECCV 2012 - 12th European Conference on Computer Vision, Proceedings
T2 - 12th European Conference on Computer Vision, ECCV 2012
Y2 - 7 October 2012 through 13 October 2012
ER -