Secure Communication in Underlay Cognitive Massive MIMO Systems with Pilot Contamination

Hayder Al-Hraishawi, Gayan Amarasuriya, Rafael F. Schaefer

Research output: Contribution to journalConference articlepeer-review

7 Scopus citations

Abstract

In this paper, the detrimental effects of intra-cell pilot contamination for physical layer secure communication in cognitive multi-user massive multiple-input multiple-output (MIMO) systems with underlay spectrum sharing are investigated. The channel estimates at the primary base-station (PBS) and secondary base-station are obtained by using non-orthogonal pilot sequences transmitted by the primary user nodes and secondary user nodes, respectively. Hence, these channel estimates are affected by intra-cell pilot contamination. Furthermore, a passive multi-antenna eavesdropper is assumed to be eavesdropping upon either the primary or secondary confidential transmissions. In this context, a physical layer security strategy is provisioned for the primary and secondary transmissions via artificial noise generation at the PBS and zero-forcing precoders. For this system set-up, the average and asymptotic achievable secrecy rate expressions are derived in closed-form, and thereby, the secrecy rate degradation due to intra-cell pilot contamination is quantified. Our analysis reveals that a physical layer secure communication can be provisioned for both primary and secondary massive MIMO systems even with channel estimation errors and pilot contamination.

Original languageEnglish
Pages (from-to)1-7
Number of pages7
JournalProceedings - IEEE Global Communications Conference, GLOBECOM
Volume2018-January
DOIs
StatePublished - 2017
Externally publishedYes
Event2017 IEEE Global Communications Conference, GLOBECOM 2017 - Singapore, Singapore
Duration: 4 Dec 20178 Dec 2017

Fingerprint

Dive into the research topics of 'Secure Communication in Underlay Cognitive Massive MIMO Systems with Pilot Contamination'. Together they form a unique fingerprint.

Cite this