Abstract
Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) is a long-standing direct dark matter detection experiment with cryogenic detectors located at the underground facility Laboratori Nazionali del Gran Sasso in Italy. CRESST-III, the third generation of CRESST, was specifically designed to have a world-leading sensitivity for low-mass dark matter (DM) (less than 2 GeV/c 2) to probe the spin-independent DM-nucleus cross section. At present, a large part of the parameter space for spin-independent scattering off nuclei remains untested for dark matter particles with masses below few GeV/c 2 although many motivated theoretical models having been proposed. The CRESST-III experiment employs scintillating CaWO 4 crystals of ∼ 25 g as target material for dark matter interactions operated as cryogenic scintillating calorimeters at ∼ 10 mK. CRESST-III first data taking was successfully completed in 2018, achieving an unprecedented energy threshold for nuclear recoils. This result extended the present sensitivity to DM particles as light as ∼ 160 MeV/c 2. In this paper, an overview of the CRESST-III detectors and results will be presented.
Original language | English |
---|---|
Pages (from-to) | 547-555 |
Number of pages | 9 |
Journal | Journal of Low Temperature Physics |
Volume | 199 |
Issue number | 1-2 |
DOIs | |
State | Published - 1 Apr 2020 |
Externally published | Yes |
Keywords
- Cryogenic detectors
- Dark matter
- Particle identification
- Rare event searches