TY - JOUR
T1 - Screening Mixed-Metal Sn2M(III)Ch2X3 Chalcohalides for Photovoltaic Applications
AU - Henkel, Pascal
AU - Li, Jingrui
AU - Grandhi, G. Krishnamurthy
AU - Vivo, Paola
AU - Rinke, Patrick
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society
PY - 2023/9/26
Y1 - 2023/9/26
N2 - Quaternary mixed-metal chalcohalides (Sn2M(III)Ch2X3) are emerging as promising lead-free, perovskite-inspired photovoltaic absorbers. Motivated by recent developments of a first Sn2SbS2I3-based device, we used density functional theory to identify lead-free Sn2M(III)Ch2X3 materials that are structurally and energetically stable within Cmcm, Cmc21, and P21/c space groups and have a band gap in the range of 0.7-2.0 eV to cover outdoor and indoor photovoltaic applications. A total of 27 Sn2M(III)Ch2X3 materials were studied, including Sb, Bi, and In for the M(III)-site, S, Se, and Te for the Ch-site, and Cl, Br, and I for the X-site. We identified 12 materials with a direct band gap that meet our requirements, namely, Sn2InS2Br3, Sn2InS2I3, Sn2InSe2Cl3, Sn2InSe2Br3, Sn2InTe2Br3, Sn2InTe2Cl3, Sn2SbS2I3, Sn2SbSe2Cl3, Sn2SbSe2I3, Sn2SbTe2Cl3, Sn2BiS2I3, and Sn2BiTe2Cl3. A database scan reveals that 9 of 12 are new compositions. For all 27 materials, P21/c is the thermodynamically preferred structure, followed by Cmc21. In Cmcm and Cmc21, mainly direct gaps occur, whereas indirect gaps occur in P21/c. To open up the possibility of band gap tuning in the future, we identified 12 promising Sn2M(III)1-aM(III)′aCh2-bCh′bX3-cX′c alloys, which fulfill our requirements, and an additional 69 materials by combining direct and indirect band gap compounds.
AB - Quaternary mixed-metal chalcohalides (Sn2M(III)Ch2X3) are emerging as promising lead-free, perovskite-inspired photovoltaic absorbers. Motivated by recent developments of a first Sn2SbS2I3-based device, we used density functional theory to identify lead-free Sn2M(III)Ch2X3 materials that are structurally and energetically stable within Cmcm, Cmc21, and P21/c space groups and have a band gap in the range of 0.7-2.0 eV to cover outdoor and indoor photovoltaic applications. A total of 27 Sn2M(III)Ch2X3 materials were studied, including Sb, Bi, and In for the M(III)-site, S, Se, and Te for the Ch-site, and Cl, Br, and I for the X-site. We identified 12 materials with a direct band gap that meet our requirements, namely, Sn2InS2Br3, Sn2InS2I3, Sn2InSe2Cl3, Sn2InSe2Br3, Sn2InTe2Br3, Sn2InTe2Cl3, Sn2SbS2I3, Sn2SbSe2Cl3, Sn2SbSe2I3, Sn2SbTe2Cl3, Sn2BiS2I3, and Sn2BiTe2Cl3. A database scan reveals that 9 of 12 are new compositions. For all 27 materials, P21/c is the thermodynamically preferred structure, followed by Cmc21. In Cmcm and Cmc21, mainly direct gaps occur, whereas indirect gaps occur in P21/c. To open up the possibility of band gap tuning in the future, we identified 12 promising Sn2M(III)1-aM(III)′aCh2-bCh′bX3-cX′c alloys, which fulfill our requirements, and an additional 69 materials by combining direct and indirect band gap compounds.
UR - http://www.scopus.com/inward/record.url?scp=85174249517&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.3c01629
DO - 10.1021/acs.chemmater.3c01629
M3 - Article
AN - SCOPUS:85174249517
SN - 0897-4756
VL - 35
SP - 7761
EP - 7769
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 18
ER -