TY - JOUR
T1 - scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies
AU - Schmid, Katharina T.
AU - Höllbacher, Barbara
AU - Cruceanu, Cristiana
AU - Böttcher, Anika
AU - Lickert, Heiko
AU - Binder, Elisabeth B.
AU - Theis, Fabian J.
AU - Heinig, Matthias
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Single cell RNA-seq has revolutionized transcriptomics by providing cell type resolution for differential gene expression and expression quantitative trait loci (eQTL) analyses. However, efficient power analysis methods for single cell data and inter-individual comparisons are lacking. Here, we present scPower; a statistical framework for the design and power analysis of multi-sample single cell transcriptomic experiments. We modelled the relationship between sample size, the number of cells per individual, sequencing depth, and the power of detecting differentially expressed genes within cell types. We systematically evaluated these optimal parameter combinations for several single cell profiling platforms, and generated broad recommendations. In general, shallow sequencing of high numbers of cells leads to higher overall power than deep sequencing of fewer cells. The model, including priors, is implemented as an R package and is accessible as a web tool. scPower is a highly customizable tool that experimentalists can use to quickly compare a multitude of experimental designs and optimize for a limited budget.
AB - Single cell RNA-seq has revolutionized transcriptomics by providing cell type resolution for differential gene expression and expression quantitative trait loci (eQTL) analyses. However, efficient power analysis methods for single cell data and inter-individual comparisons are lacking. Here, we present scPower; a statistical framework for the design and power analysis of multi-sample single cell transcriptomic experiments. We modelled the relationship between sample size, the number of cells per individual, sequencing depth, and the power of detecting differentially expressed genes within cell types. We systematically evaluated these optimal parameter combinations for several single cell profiling platforms, and generated broad recommendations. In general, shallow sequencing of high numbers of cells leads to higher overall power than deep sequencing of fewer cells. The model, including priors, is implemented as an R package and is accessible as a web tool. scPower is a highly customizable tool that experimentalists can use to quickly compare a multitude of experimental designs and optimize for a limited budget.
UR - http://www.scopus.com/inward/record.url?scp=85119098978&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-26779-7
DO - 10.1038/s41467-021-26779-7
M3 - Article
C2 - 34785648
AN - SCOPUS:85119098978
SN - 2041-1723
VL - 12
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 6625
ER -