TY - GEN
T1 - Schedule integration for time-triggered systems
AU - Sagstetter, Florian
AU - Lukasiewycz, Martin
AU - Chakraborty, Samarjit
PY - 2013
Y1 - 2013
N2 - This paper presents a framework for schedule integration of time-triggered systems tailored to the automotive domain. In-vehicle networks might be very large and complex and hence obtaining a schedule for a fully synchronous system becomes a challenging task since all bus and processor constraints as well as end-to-end-timing constraints have to be taken concurrently into account. Existing optimization approaches apply the schedule optimization to the entire network, limiting their application due to scalability issues. In contrast, the presented framework obtains the schedule for the entire network, using a two-step approach where for each cluster a local schedule is obtained first and the local schedules are then merged to the global schedule. This approach is also in accordance with the design process in the automotive industry where different subsystems are developed independently to reduce the design complexity and are finally combined in the integration stage. In this paper, a generic framework for schedule integration of time-triggered systems is presented. Further, we show how this framework is implemented for a FlexRay network using an Integer Linear Programming (ILP) approach which might also be easily adapted to other protocols. A realistic case study and a scalability analysis give evidence of the applicability and efficiency of our approach.
AB - This paper presents a framework for schedule integration of time-triggered systems tailored to the automotive domain. In-vehicle networks might be very large and complex and hence obtaining a schedule for a fully synchronous system becomes a challenging task since all bus and processor constraints as well as end-to-end-timing constraints have to be taken concurrently into account. Existing optimization approaches apply the schedule optimization to the entire network, limiting their application due to scalability issues. In contrast, the presented framework obtains the schedule for the entire network, using a two-step approach where for each cluster a local schedule is obtained first and the local schedules are then merged to the global schedule. This approach is also in accordance with the design process in the automotive industry where different subsystems are developed independently to reduce the design complexity and are finally combined in the integration stage. In this paper, a generic framework for schedule integration of time-triggered systems is presented. Further, we show how this framework is implemented for a FlexRay network using an Integer Linear Programming (ILP) approach which might also be easily adapted to other protocols. A realistic case study and a scalability analysis give evidence of the applicability and efficiency of our approach.
UR - http://www.scopus.com/inward/record.url?scp=84877771604&partnerID=8YFLogxK
U2 - 10.1109/ASPDAC.2013.6509558
DO - 10.1109/ASPDAC.2013.6509558
M3 - Conference contribution
AN - SCOPUS:84877771604
SN - 9781467330299
T3 - Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC
SP - 53
EP - 58
BT - 2013 18th Asia and South Pacific Design Automation Conference, ASP-DAC 2013
T2 - 2013 18th Asia and South Pacific Design Automation Conference, ASP-DAC 2013
Y2 - 22 January 2013 through 25 January 2013
ER -