ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans

Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed, Jurgen Sturm, Matthias Niebner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

239 Scopus citations

Abstract

We introduce ScanComplete, a novel data-driven approach for taking an incomplete 3D scan of a scene as input and predicting a complete 3D model along with per-voxel semantic labels. The key contribution of our method is its ability to handle large scenes with varying spatial extent, managing the cubic growth in data size as scene size increases. To this end, we devise a fully-convolutional generative 3D CNN model whose filter kernels are invariant to the overall scene size. The model can be trained on scene subvolumes but deployed on arbitrarily large scenes at test time. In addition, we propose a coarse-to-fine inference strategy in order to produce high-resolution output while also leveraging large input context sizes. In an extensive series of experiments, we carefully evaluate different model design choices, considering both deterministic and probabilistic models for completion and semantic inference. Our results show that we outperform other methods not only in the size of the environments handled and processing efficiency, but also with regard to completion quality and semantic segmentation performance by a significant margin.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages4578-4587
Number of pages10
ISBN (Electronic)9781538664209
DOIs
StatePublished - 14 Dec 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: 18 Jun 201822 Jun 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period18/06/1822/06/18

Fingerprint

Dive into the research topics of 'ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans'. Together they form a unique fingerprint.

Cite this