TY - JOUR
T1 - Sb-saturated high-temperature growth of extended, self-catalyzed GaAsSb nanowires on silicon with high quality
AU - Schmiedeke, P.
AU - Döblinger, M.
AU - Meinhold-Heerlein, M. A.
AU - Doganlar, C.
AU - Finley, J. J.
AU - Koblmüller, G.
N1 - Publisher Copyright:
© 2023 The Author(s). Published by IOP Publishing Ltd.
PY - 2024/1/29
Y1 - 2024/1/29
N2 - Ternary GaAsSb nanowires (NW) are key materials for integrated high-speed photonic applications on silicon (Si), where homogeneous, high aspect-ratio dimensions and high-quality properties for controlled absorption, mode confinement and waveguiding are much desired. Here, we demonstrate a unique high-temperature (high-T >650 °C) molecular beam epitaxial (MBE) approach to realize self-catalyzed GaAsSb NWs site-selectively on Si with high aspect-ratio and non-tapered morphologies under antimony (Sb)-saturated conditions. While hitherto reported low-moderate temperature growth processes result in early growth termination and inhomogeneous morphologies, the non-tapered nature of NWs under high-T growth is independent of the supply rates of relevant growth species. Analysis of dedicated Ga-flux and growth time series, allows us to pinpoint the microscopic mechanisms responsible for the elimination of tapering, namely concurrent vapor-solid, step-flow growth along NW side-facets enabled by enhanced Ga diffusion under the high-T growth. Performing growth in an Sb-saturated regime, leads to high Sb-content in VLS-GaAsSb NW close to 30% that is independent of Ga-flux. This independence enables multi-step growth via sequentially increased Ga-flux to realize uniform and very long (>7 μm) GaAsSb NWs. The excellent properties of these NWs are confirmed by a completely phase-pure, twin-free zincblende (ZB) crystal structure, a homogeneous Sb-content along the VLS-GaAsSb NW growth axis, along with remarkably narrow, single-peak low-temperature photoluminescence linewidth (<15 meV) at wavelengths of ∼1100-1200 nm.
AB - Ternary GaAsSb nanowires (NW) are key materials for integrated high-speed photonic applications on silicon (Si), where homogeneous, high aspect-ratio dimensions and high-quality properties for controlled absorption, mode confinement and waveguiding are much desired. Here, we demonstrate a unique high-temperature (high-T >650 °C) molecular beam epitaxial (MBE) approach to realize self-catalyzed GaAsSb NWs site-selectively on Si with high aspect-ratio and non-tapered morphologies under antimony (Sb)-saturated conditions. While hitherto reported low-moderate temperature growth processes result in early growth termination and inhomogeneous morphologies, the non-tapered nature of NWs under high-T growth is independent of the supply rates of relevant growth species. Analysis of dedicated Ga-flux and growth time series, allows us to pinpoint the microscopic mechanisms responsible for the elimination of tapering, namely concurrent vapor-solid, step-flow growth along NW side-facets enabled by enhanced Ga diffusion under the high-T growth. Performing growth in an Sb-saturated regime, leads to high Sb-content in VLS-GaAsSb NW close to 30% that is independent of Ga-flux. This independence enables multi-step growth via sequentially increased Ga-flux to realize uniform and very long (>7 μm) GaAsSb NWs. The excellent properties of these NWs are confirmed by a completely phase-pure, twin-free zincblende (ZB) crystal structure, a homogeneous Sb-content along the VLS-GaAsSb NW growth axis, along with remarkably narrow, single-peak low-temperature photoluminescence linewidth (<15 meV) at wavelengths of ∼1100-1200 nm.
KW - GaAsSb nanowires
KW - growth dynamics
KW - photoluminescence spectroscopy
KW - selective area growth on Si
KW - transmission electron microscopy
UR - http://www.scopus.com/inward/record.url?scp=85177103346&partnerID=8YFLogxK
U2 - 10.1088/1361-6528/ad06ce
DO - 10.1088/1361-6528/ad06ce
M3 - Article
C2 - 37879325
AN - SCOPUS:85177103346
SN - 0957-4484
VL - 35
JO - Nanotechnology
JF - Nanotechnology
IS - 5
M1 - 055601
ER -