Sailing and Flying with a Multimodal Robot

Raphael Zufferey, Robert Siddall, Sophie F. Armanini, Mirko Kovac

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

The field of aerial-aquatic robotics promises tremendous benefits in data collection as well as unmatched flexibility and remote access. However, the majority of existing aerial-aquatic robots are unable to perform scientific tasks at significant depth, limited by the weight penalty that any pressure resistant container would add. In addition, sealing of an actuated robot is difficult, again adding significant weight to small systems. Wireless communication is a major challenge for underwater robots and certainly poses great constraints to operation at distance. Lastly, underwater propulsion is often highly inefficient due to geometries optimised for flight [109]. Indeed, most aerial-aquatic vehicles either have severely limited water range and operation, stay in very shallow waters or function only in de-ionised water. Too often, the benefit of underwater locomotion is overshadowed by the weight, and complexity increases that are required for reliable operation. This negatively impacts flight performance.

Original languageEnglish
Title of host publicationBiosystems and Biorobotics
PublisherSpringer Science and Business Media Deutschland GmbH
Pages167-195
Number of pages29
DOIs
StatePublished - 2022

Publication series

NameBiosystems and Biorobotics
Volume29
ISSN (Print)2195-3562
ISSN (Electronic)2195-3570

Fingerprint

Dive into the research topics of 'Sailing and Flying with a Multimodal Robot'. Together they form a unique fingerprint.

Cite this