RSKDD-Net: Random sample-based keypoint detector and descriptor

Fan Lu, Guang Chen, Yinlong Liu, Zhongnan Qu, Alois Knoll

Research output: Contribution to journalConference articlepeer-review

22 Scopus citations


Keypoint detector and descriptor are two main components of point cloud registration. Previous learning-based keypoint detectors rely on saliency estimation for each point or farthest point sample (FPS) for candidate points selection, which are inefficient and not applicable in large scale scenes. This paper proposes Random Sample-based Keypoint Detector and Descriptor Network (RSKDD-Net) for large scale point cloud registration. The key idea is using random sampling to efficiently select candidate points and using a learning-based method to jointly generate keypoints and descriptors. To tackle the information loss of random sampling, we exploit a novel random dilation cluster strategy to enlarge the receptive field of each sampled point and an attention mechanism to aggregate the positions and features of neighbor points. Furthermore, we propose a matching loss to train the descriptor in a weakly supervised manner. Extensive experiments on two large scale outdoor LiDAR datasets show that the proposed RSKDD-Net achieves state-of-the-art performance with more than 15 times faster than existing methods. Our code is available at

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: 6 Dec 202012 Dec 2020


Dive into the research topics of 'RSKDD-Net: Random sample-based keypoint detector and descriptor'. Together they form a unique fingerprint.

Cite this