Room layout estimation from rapid omnidirectional exploration

Robert Lukierski, Stefan Leutenegger, Andrew J. Davison

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

A new generation of practical, low-cost indoor robots is now using wide-angle cameras to aid navigation, but usually this is limited to position estimation via sparse feature-based SLAM. Such robots usually have little global sense of the dimensions, demarcation or identities of the rooms they are in, information which would be very useful to enable behaviour with much more high level intelligence. In this paper we show that we can augment an omni-directional SLAM pipeline with straightforward dense stereo estimation and simple and robust room model fitting to obtain rapid and reliable estimation of the global shape of typical rooms from short robot motions. We have tested our method extensively in real homes, offices and on synthetic data. We also give examples of how our method can extend to making composite maps of larger rooms, and detecting room transitions.

Original languageEnglish
Title of host publicationICRA 2017 - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6315-6322
Number of pages8
ISBN (Electronic)9781509046331
DOIs
StatePublished - 21 Jul 2017
Externally publishedYes
Event2017 IEEE International Conference on Robotics and Automation, ICRA 2017 - Singapore, Singapore
Duration: 29 May 20173 Jun 2017

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2017 IEEE International Conference on Robotics and Automation, ICRA 2017
Country/TerritorySingapore
CitySingapore
Period29/05/173/06/17

Fingerprint

Dive into the research topics of 'Room layout estimation from rapid omnidirectional exploration'. Together they form a unique fingerprint.

Cite this