TY - JOUR
T1 - Role of the adipocyte-specific NF-κB activity in the regulation of IP-10 and T cell migration
AU - Krinninger, Patricia
AU - Brunner, Cornelia
AU - Ruiz, Pedro A.
AU - Schneider, Elisabeth
AU - Marx, Nikolaus
AU - Foryst-Ludwig, Anna
AU - Kintscher, Ulrich
AU - Haller, Dirk
AU - Laumen, Helmut
AU - Hauner, Hans
PY - 2011/2
Y1 - 2011/2
N2 - Infiltration of immune cells into adipose tissue plays a central role in the pathophysiology of obesity-associated low-grade inflammation. The aim of this study was to analyze the role of adipocyte NF-κB signaling in the regulation of the chemokine/adipokine interferon-γ-induced protein 10 kDa (IP-10) and adipocyte-mediated T cell migration. Therefore, the regulation of IP-10 was investigated in adipose tissue of male C57BL/6J mice, primary human and 3T3-L1 preadipocytes/ adipocytes. To specifically block the NF-κB pathway, 3T3-L1 cells stably overexpressing a transdominant mutant of IκBα were generated, and the chemical NF-κB inhibitor Bay117082 was used. Adipocyte-mediated T cell migration was assessed by a migration assay. It could be shown that IP-10 expression was higher in mature adipocytes compared with preadipocytes. Induced IP-10 expression and secretion were completely blocked by an NF-κB inhibitor in 3T3-L1 and primary human adipocytes. Stable overexpression of a transdominant mutant of IκBα in 3T3-L1 adipocytes led to an inhibition of basal and stimulated IP-10 expression and secretion. T cell migration was induced by 3T3-L1 adipocyte-conditioned medium, and both basal and induced T cell migration was strongly inhibited by stable overexpression of a transdominant IκBα mutant. In addition, with the use of an anti-IP-10 antibody, a significant decrease of adipocyte-induced T cell migration was shown. In conclusion, in this study, we could demonstrate that the NF-κB pathway is essential for the regulation of IP-10 in 3T3-L1 and primary human adipocytes. Adipocytes rather than preadipocytes contribute to NF-κB-dependent IP-10 expression and secretion. Furthermore, NF-κB-dependent factors and especially IP-10 represent novel signals from adipocytes to induce T cell migration.
AB - Infiltration of immune cells into adipose tissue plays a central role in the pathophysiology of obesity-associated low-grade inflammation. The aim of this study was to analyze the role of adipocyte NF-κB signaling in the regulation of the chemokine/adipokine interferon-γ-induced protein 10 kDa (IP-10) and adipocyte-mediated T cell migration. Therefore, the regulation of IP-10 was investigated in adipose tissue of male C57BL/6J mice, primary human and 3T3-L1 preadipocytes/ adipocytes. To specifically block the NF-κB pathway, 3T3-L1 cells stably overexpressing a transdominant mutant of IκBα were generated, and the chemical NF-κB inhibitor Bay117082 was used. Adipocyte-mediated T cell migration was assessed by a migration assay. It could be shown that IP-10 expression was higher in mature adipocytes compared with preadipocytes. Induced IP-10 expression and secretion were completely blocked by an NF-κB inhibitor in 3T3-L1 and primary human adipocytes. Stable overexpression of a transdominant mutant of IκBα in 3T3-L1 adipocytes led to an inhibition of basal and stimulated IP-10 expression and secretion. T cell migration was induced by 3T3-L1 adipocyte-conditioned medium, and both basal and induced T cell migration was strongly inhibited by stable overexpression of a transdominant IκBα mutant. In addition, with the use of an anti-IP-10 antibody, a significant decrease of adipocyte-induced T cell migration was shown. In conclusion, in this study, we could demonstrate that the NF-κB pathway is essential for the regulation of IP-10 in 3T3-L1 and primary human adipocytes. Adipocytes rather than preadipocytes contribute to NF-κB-dependent IP-10 expression and secretion. Furthermore, NF-κB-dependent factors and especially IP-10 represent novel signals from adipocytes to induce T cell migration.
KW - Adipokine
KW - Inflammation
KW - Interferon-γ-induced protein 10 kilodalton
KW - Nuclear factor-κB
KW - Obesity
KW - Signaling
UR - http://www.scopus.com/inward/record.url?scp=79251563429&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00143.2010
DO - 10.1152/ajpendo.00143.2010
M3 - Article
C2 - 21062959
AN - SCOPUS:79251563429
SN - 0193-1849
VL - 300
SP - E304-E311
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 2
ER -