Abstract
Objective: The aim of this study was to investigate the role of voltage-dependent calcium channels (VDCCs) in axon degeneration during autoimmune optic neuritis. Methods: Calcium ion (Ca2+) influx into the optic nerve (ON) through VDCCs was investigated in a rat model of optic neuritis using manganese-enhanced magnetic resonance imaging and in vivo calcium imaging. After having identified the most relevant channel subtype (N-type VDCCs), we correlated immunohistochemistry of channel expression with ON histopathology. In the confirmatory part of this work, we performed a treatment study using ω-conotoxin GVIA, an N-type specific blocker. Results: We observed that pathological Ca2+ influx into ONs during optic neuritis is mediated via N-type VDCCs. By analyzing the expression of VDCCs in the inflamed ONs, we detected an upregulation of α1B, the pore-forming subunit of N-type VDCCs, in demyelinated axons. However, high expression levels were also found on macrophages/activated microglia, and lower levels were detected on astrocytes. The relevance of N-type VDCCs for inflammation-induced axonal degeneration and the severity of optic neuritis was corroborated by treatment with ω-conotoxin GVIA. This blocker led to decreased axon and myelin degeneration in the ONs together with a reduced number of macrophages/activated microglia. These protective effects were confirmed by analyzing the spinal cords of the same animals. Interpretation: We conclude that N-type VDCCs play an important role in inflammation-induced axon degeneration via two mechanisms: First, they directly mediate toxic Ca2+ influx into the axons; and second, they contribute to macrophage/microglia function, thereby promoting secondary axonal damage.
Original language | English |
---|---|
Pages (from-to) | 81-93 |
Number of pages | 13 |
Journal | Annals of Neurology |
Volume | 66 |
Issue number | 1 |
DOIs | |
State | Published - Jul 2009 |
Externally published | Yes |