Robust segmentation of various anatomies in 3D ultrasound using hough forests and learned data representations

Fausto Milletari, Seyed Ahmad Ahmadi, Christine Kroll, Christoph Hennersperger, Federico Tombari, Amit Shah, Annika Plate, Kai Boetzel, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

3D ultrasound segmentation is a challenging task due to image artefacts, low signal-to-noise ratio and lack of contrast at anatomical boundaries. Current solutions usually rely on complex, anatomy-specific regularization methods to improve segmentation accuracy. In this work, we propose a highly adaptive learning-based method for fully automatic segmentation of ultrasound volumes. During training, anatomy-specific features are obtained through a sparse auto-encoder. The extracted features are employed in a Hough Forest based framework to retrieve the position of the target anatomy and its segmentation contour. The resulting method is fully automatic, i.e. it does not require any human interaction, and can robustly and automatically adapt to different anatomies yet enforcing appearance and shape constraints.We demonstrate the performance of the method for three different applications: segmentation of midbrain, left ventricle of the heart and prostate.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference, Proceedings
EditorsJoachim Hornegger, Alejandro F. Frangi, William M. Wells, Alejandro F. Frangi, Nassir Navab, Joachim Hornegger, Nassir Navab, William M. Wells, William M. Wells, Alejandro F. Frangi, Joachim Hornegger, Nassir Navab
PublisherSpringer Verlag
Pages111-118
Number of pages8
ISBN (Print)9783319245706, 9783319245706, 9783319245706
DOIs
StatePublished - 2015
Event18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015 - Munich, Germany
Duration: 5 Oct 20159 Oct 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9350
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015
Country/TerritoryGermany
CityMunich
Period5/10/159/10/15

Fingerprint

Dive into the research topics of 'Robust segmentation of various anatomies in 3D ultrasound using hough forests and learned data representations'. Together they form a unique fingerprint.

Cite this