Robust Object-Based Multipass InSAR Deformation Reconstruction

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Deformation monitoring by multipass synthetic aperture radar (SAR) interferometry (InSAR) is, so far, the only imaging-based method to assess millimeter-level deformation over large areas from space. Past research mostly focused on the optimal retrieval of deformation parameters on the basis of a single pixel or a pixel cluster. Only until recently, the first demonstration of object-based urban infrastructure monitoring by fusing InSAR and the semantic classification labels derived from optical images was presented by Wang et al. Given such classification labels in the SAR image, we propose a general framework for object-based InSAR parameter retrieval, where the parameters of the whole object are jointly estimated by the inversion of a regularized tensor model instead of pixelwise. Our approach does not assume the stationarity of each sample in the object, which is usually assumed in other pixel cluster-based methods, such as SqueeSAR. In addition, to handle outliers in real data, a robust phase recovery step prior to parameter retrieval is also introduced. In typical settings, the proposed method outperforms the current pixelwise estimators, e.g., periodogram, by a factor of several tens in the accuracy of the linear deformation estimates. Last but not least, for a practical demonstration on bridge monitoring, we present a full workflow of long-term bridge monitoring using the proposed approach.

Original languageEnglish
Article number7926387
Pages (from-to)4239-4251
Number of pages13
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume55
Issue number8
DOIs
StatePublished - Aug 2017

Keywords

  • Bridge detection
  • SAR interferometry (InSAR)
  • joint deformation reconstruction
  • object-based
  • synthetic aperture radar (SAR)

Fingerprint

Dive into the research topics of 'Robust Object-Based Multipass InSAR Deformation Reconstruction'. Together they form a unique fingerprint.

Cite this