Robust learning-based x-ray image denoising - Potential pitfalls, their analysis and solutions

Sai Gokul Hariharan, Christian Kaethner, Norbert Strobel, Markus Kowarschik, Rebecca Fahrig, Nassir Navab

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Purpose: Since guidance based on x-ray imaging is an integral part of interventional procedures, continuous efforts are taken towards reducing the exposure of patients and clinical staff to ionizing radiation. Even though a reduction in the x-ray dose may lower associated radiation risks, it is likely to impair the quality of the acquired images, potentially making it more difficult for physicians to carry out their procedures. Method: We present a robust learning-based denoising strategy involving model-based simulations of low-dose x-ray images during the training phase. The method also utilizes a data-driven normalization step - based on an x-ray imaging model - to stabilize the mixed signal-dependent noise associated with x-ray images. We thoroughly analyze the method's sensitivity to a mismatch in dose levels used for training and application. We also study the impact of differing noise models used when training for low and very low-dose x-ray images on the denoising results. Results: A quantitative and qualitative analysis based on acquired phantom and clinical data has shown that the proposed learning-based strategy is stable across different dose levels and yields excellent denoising results, if an accurate noise model is applied. We also found that there can be severe artifacts when the noise characteristics of the training images are significantly different from those in the actual images to be processed. This problem can be especially acute at very low dose levels. During a thorough analysis of our experimental results, we further discovered that viewing the results from the perspective of denoising via thresholding of sub-band coefficients can be very beneficial to get a better understanding of the proposed learning-based denoising strategy. Conclusion: The proposed learning-based denoising strategy provides scope for significant x-ray dose reduction without the loss of important image information if the characteristics of noise is accurately accounted for during the training phase.

Original languageEnglish
Article number035013
JournalBiomedical Physics and Engineering Express
Volume8
Issue number3
DOIs
StatePublished - May 2022

Keywords

  • deep learning
  • denoising
  • low-dose x-ray imaging
  • noise simulation

Fingerprint

Dive into the research topics of 'Robust learning-based x-ray image denoising - Potential pitfalls, their analysis and solutions'. Together they form a unique fingerprint.

Cite this