Robust cooperative localization in a dynamic environment using factor graphs and probability data association filter

Dhiraj Gulati, Feihu Zhang, Daniel Malovetz, Daniel Clarke, Alois Knoll

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Autonomous vehicles operating in dynamic environments rely on precise localization. In this paper we present a novel approach for cooperative localization of vehicular systems and an infrastructure RADAR which is resilient against outliers generated from the RADAR. The problem of cooperative localization is represented as a factor graph, where interrelated topologies (including that of outliers) are added as constraint factor between vehicle states. Corresponding probabilities for multiple topologies between states of the two vehicles are calculated using the Probability Data Association Filter and assigned to the respective edges in the graph. Simulation results indicate that this technique has significant benefits in the context of improving the resilience against outliers while optimizing joint state estimates. The methodology presented in this paper has the potential to provide a robust and flexible framework for cooperative localization in the presence of clutter, obscuration and targets entering and leaving the field of view.

Original languageEnglish
Title of host publication20th International Conference on Information Fusion, Fusion 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9780996452700
DOIs
StatePublished - 11 Aug 2017
Event20th International Conference on Information Fusion, Fusion 2017 - Xi'an, China
Duration: 10 Jul 201713 Jul 2017

Publication series

Name20th International Conference on Information Fusion, Fusion 2017 - Proceedings

Conference

Conference20th International Conference on Information Fusion, Fusion 2017
Country/TerritoryChina
CityXi'an
Period10/07/1713/07/17

Fingerprint

Dive into the research topics of 'Robust cooperative localization in a dynamic environment using factor graphs and probability data association filter'. Together they form a unique fingerprint.

Cite this