Robust Budget Allocation Via Continuous Submodular Functions

Matthew Staib, Stefanie Jegelka

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The optimal allocation of resources for maximizing influence, spread of information or coverage, has gained attention in the past years, in particular in machine learning and data mining. But in applications, the parameters of the problem are rarely known exactly, and using wrong parameters can lead to undesirable outcomes. We hence revisit a continuous version of the Budget Allocation or Bipartite Influence Maximization problem introduced by Alon et al. (in: WWW’12 - Proceedings of the 21st Annual Conference on World Wide, ACM, New York, 2012) from a robust optimization perspective, where an adversary may choose the least favorable parameters within a confidence set. The resulting problem is a nonconvex–concave saddle point problem (or game). We show that this nonconvex problem can be solved exactly by leveraging connections to continuous submodular functions, and by solving a constrained submodular minimization problem. Although constrained submodular minimization is hard in general, here, we establish conditions under which such a problem can be solved to arbitrary precision ε.

Original languageEnglish
Pages (from-to)1049-1079
Number of pages31
JournalApplied Mathematics & Optimization
Volume82
Issue number3
DOIs
StatePublished - 1 Dec 2020
Externally publishedYes

Keywords

  • Budget allocation
  • Constrained submodular optimization
  • Nonconvex optimization
  • Robust optimization
  • Submodular optimization

Fingerprint

Dive into the research topics of 'Robust Budget Allocation Via Continuous Submodular Functions'. Together they form a unique fingerprint.

Cite this