Risk Estimation for ICU Patients with Personalized Anomaly-Encoded Bedside Patient Data

Kai Wu, Ee Heng Chen, Felix Wirth, Keti Vitanova, Rudiger Lange, Darius Burschka

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We propose a novel framework to estimate intensive care unit patients' health risk continuously with anomaly-encoded patient data. This framework consists of two modules. In the first module, we use Gaussian process models to learn change trend and day-night circulation in temporal patient data and annotate abnormal data. Such models provide dynamically adaptable bedside patient monitoring instead of conventional threshold-based monitoring. In the second module, we use the abnormal data together with the learned Gaussian models to estimate patients' risk level by predicting their in-hospital mortality and remaining length of stay in ICU ward. We show that prediction models with anomaly-encoded data have better performance than those with raw patient measurements, and they are comparable with state-of-art prediction models.

Original languageEnglish
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: 24 Jul 202327 Jul 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period24/07/2327/07/23

Fingerprint

Dive into the research topics of 'Risk Estimation for ICU Patients with Personalized Anomaly-Encoded Bedside Patient Data'. Together they form a unique fingerprint.

Cite this