Abstract
Chemical recycling of polymers is an elegant approach to achieve a circular economy and address the sustainability and end-of-life issues of plastics. Herein, we report the ring-opening polymerization of a bicyclic lactone that is easily accessible from norcamphor. High molecular weight polyesters (Mn up to 164 kg mol-1) are obtained using ZnEt2 as catalyst, while the polymerizability of the monomer is good even at high temperatures. More importantly, the polymers can be completely depolymerized under thermolysis conditions to selectively recover the pristine monomer. Thus, the monomer design strategy of using ring-fused/hybridized lactones enables an innovative monomer-polymer system that shows both high polymerizability and high depolymerizability.
Original language | English |
---|---|
Pages (from-to) | 1162-1166 |
Number of pages | 5 |
Journal | ACS Macro Letters |
Volume | 11 |
Issue number | 9 |
DOIs | |
State | Published - 20 Sep 2022 |