Review of Data Types and Model Dimensionality for Cardiac DTI SMS-Related Artefact Removal

Michael Tänzer, Sea Hee Yook, Pedro Ferreira, Guang Yang, Daniel Rueckert, Sonia Nielles-Vallespin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

As diffusion tensor imaging (DTI) gains popularity in cardiac imaging due to its unique ability to non-invasively assess the cardiac microstructure, deep learning-based Artificial Intelligence is becoming a crucial tool in mitigating some of its drawbacks, such as the long scan times. As it often happens in fast-paced research environments, a lot of emphasis has been put on showing the capability of deep learning while often not enough time has been spent investigating what input and architectural properties would benefit cardiac DTI acceleration the most. In this work, we compare the effect of several input types (magnitude images vs complex images), multiple dimensionalities (2D vs 3D operations), and multiple input types (single slice vs multi-slice) on the performance of a model trained to remove artefacts caused by a simultaneous multi-slice (SMS) acquisition. Despite our initial intuition, our experiments show that, for a fixed number of parameters, simpler 2D real-valued models outperform their more advanced 3D or complex counterparts. The best performance is although obtained by a real-valued model trained using both the magnitude and phase components of the acquired data. We believe this behaviour to be due to real-valued models making better use of the lower number of parameters, and to 3D models not being able to exploit the spatial information because of the low SMS acceleration factor used in our experiments.

Original languageEnglish
Title of host publicationStatistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers - 13th International Workshop, STACOM 2022, Held in Conjunction with MICCAI 2022, Revised Selected Papers
EditorsOscar Camara, Esther Puyol-Antón, Avan Suinesiaputra, Alistair Young, Chen Qin, Maxime Sermesant, Shuo Wang
PublisherSpringer Science and Business Media Deutschland GmbH
Pages123-132
Number of pages10
ISBN (Print)9783031234422
DOIs
StatePublished - 2022
Externally publishedYes
Event13th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2022, held in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sep 202218 Sep 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13593 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference13th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2022, held in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2218/09/22

Keywords

  • Cardiac MRI
  • Deep learning
  • Diffusion tensor imaging
  • MRI

Fingerprint

Dive into the research topics of 'Review of Data Types and Model Dimensionality for Cardiac DTI SMS-Related Artefact Removal'. Together they form a unique fingerprint.

Cite this