Revealing biogenic sulfuric acid corrosion in sludge digesters: Detection of sulfur-oxidizing bacteria within full-scale digesters

B. Huber, J. E. Drewes, K. C. Lin, R. König, E. Müller

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion.

Original languageEnglish
Pages (from-to)1405-1411
Number of pages7
JournalWater Science and Technology
Volume70
Issue number8
DOIs
StatePublished - 2014

Keywords

  • Biogenic sulfuric acid
  • Concrete corrosion
  • Digester
  • PCR-DGGE
  • Sulfate-reducing bacteria
  • Sulfur-oxidizing bacteria

Fingerprint

Dive into the research topics of 'Revealing biogenic sulfuric acid corrosion in sludge digesters: Detection of sulfur-oxidizing bacteria within full-scale digesters'. Together they form a unique fingerprint.

Cite this