Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground: CRESST Collaboration

G. Angloher, P. Bauer, A. Bento, C. Bucci, L. Canonica, X. Defay, A. Erb, F. Feilitzsch, N. Ferreiro Iachellini, P. Gorla, A. Gütlein, D. Hauff, J. Jochum, M. Kiefer, H. Kluck, H. Kraus, J. C. Lanfranchi, A. Langenkämper, J. Loebell, M. MancusoE. Mondragon, A. Münster, L. Oberauer, C. Pagliarone, F. Petricca, W. Potzel, F. Pröbst, R. Puig, F. Reindl, J. Rothe, K. Schäffner, J. Schieck, S. Schönert, W. Seidel, M. Stahlberg, L. Stodolsky, C. Strandhagen, R. Strauss, A. Tanzke, H. H.Trinh Thi, C. Türkoǧlu, M. Uffinger, A. Ulrich, I. Usherov, S. Wawoczny, M. Willers, M. Wüstrich, A. Zöller

Research output: Contribution to journalArticlepeer-review

141 Scopus citations

Abstract

Models for light dark matter particles with masses below 1 GeV/c2 are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the ν-cleus experiment has achieved an energy threshold of Eth= (19.7 ± 0.9 ) eV. This is one order of magnitude lower than for previous devices and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a high-background environment, the detector probes a new range of light-mass dark matter particles previously not accessible by direct searches. We report the first limit on the spin-independent dark matter particle-nucleon cross section for masses between 140 and 500 MeV/c2.

Original languageEnglish
Article number637
JournalEuropean Physical Journal C
Volume77
Issue number9
DOIs
StatePublished - 1 Sep 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground: CRESST Collaboration'. Together they form a unique fingerprint.

Cite this