Abstract
Atrial fibrillation (AF) is the most common arrhythmia and has a major impact on morbidity and mortality; however, detection of asymptomatic AF is challenging. This study sims to evaluate the sensitivity and specificity of non-invasive AF detection by a medical wearable. In this observational trial, patients with AF admitted to a hospital carried the wearable and an ECG Holter (control) in parallel over a period of 24 h, while not in a physically restricted condition. The wearable with a tight-fit upper armband employs a photoplethysmography technology to determine pulse rates and inter-beat intervals. Different algorithms (including a deep neural network) were applied to five-minute periods photoplethysmography datasets for the detection of AF. A total of 2306 h of parallel recording time could be obtained in 102 patients; 1781 h (77.2%) were automatically interpretable by an algorithm. Sensitivity to detect AF was 95.2% and specificity 92.5% (area under the receiver operating characteristics curve (AUC) 0.97). Usage of deep neural network improved the sensitivity of AF detection by 0.8% (96.0%) and specificity by 6.5% (99.0%) (AUC 0.98). Detection of AF by means of a wearable is feasible in hospitalized but physically active patients. Employing a deep neural network enables reliable and continuous monitoring of AF.
Original language | English |
---|---|
Article number | 5517 |
Pages (from-to) | 1-15 |
Number of pages | 15 |
Journal | Sensors (Switzerland) |
Volume | 20 |
Issue number | 19 |
DOIs | |
State | Published - 1 Oct 2020 |
Externally published | Yes |
Keywords
- Atrial fibrillation
- Clinical trial
- Deep neural network
- Photoplethysmography
- Wearable sensors