Relativistic hartree-bogoliubov theory with finite range pairing forces in coordinate space: Neutron halo in light nuclei

W. Pöschl, D. Vretenar, G. A. Lalazissis, P. Ring

Research output: Contribution to journalArticlepeer-review

144 Scopus citations

Abstract

The relativistic Hartree Bogoliubov model is applied in the self-consistent mean-field approximation to the description of the neutron halo in the mass region above the s-d shell. Pairing correlations and the coupling to particle continuum states are described by finite range two-body forces. Finite element methods are used in the coordinate space discretization of the coupled system of Dirac-Hartree-Bogoliubov integro-differential eigenvalue equations, and Klein-Gordon equations for the meson fields. Calculations are performed for the isotopic chains of Ne and C nuclei. We find evidence for the occurrence of neutron halo in heavier Ne isotopes. The properties of the 1f-2p orbitals near the Fermi level and the neutron pairing interaction play a crucial role in the formation of the halo. Our calculations display no evidence for the neutron halo phenomenon in C isotopes.

Original languageEnglish
Pages (from-to)3841-3844
Number of pages4
JournalPhysical Review Letters
Volume79
Issue number20
DOIs
StatePublished - 1997

Fingerprint

Dive into the research topics of 'Relativistic hartree-bogoliubov theory with finite range pairing forces in coordinate space: Neutron halo in light nuclei'. Together they form a unique fingerprint.

Cite this