Reflection methods for user-friendly submodular optimization

Research output: Contribution to journalConference articlepeer-review

56 Scopus citations

Abstract

Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. Consequently, there is need for efficient optimization procedures for submodular functions, especially for minimization problems. While general submodular minimization is challenging, we propose a new method that exploits existing decomposability of submodular functions. In contrast to previous approaches, our method is neither approximate, nor impractical, nor does it need any cumbersome parameter tuning. Moreover, it is easy to implement and parallelize. A key component of our method is a formulation of the discrete submodular minimization problem as a continuous best approximation problem that is solved through a sequence of reflections, and its solution can be easily thresholded to obtain an optimal discrete solution. This method solves both the continuous and discrete formulations of the problem, and therefore has applications in learning, inference, and reconstruction. In our experiments, we illustrate the benefits of our method on two image segmentation tasks.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
StatePublished - 2013
Externally publishedYes
Event27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States
Duration: 5 Dec 201310 Dec 2013

Fingerprint

Dive into the research topics of 'Reflection methods for user-friendly submodular optimization'. Together they form a unique fingerprint.

Cite this