Recursive SQL and GPU-support for in-database machine learning

Maximilian E. Schüle, Harald Lang, Maximilian Springer, Alfons Kemper, Thomas Neumann, Stephan Günnemann

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In machine learning, continuously retraining a model guarantees accurate predictions based on the latest data as training input. But to retrieve the latest data from a database, time-consuming extraction is necessary as database systems have rarely been used for operations such as matrix algebra and gradient descent. In this work, we demonstrate that SQL with recursive tables makes it possible to express a complete machine learning pipeline out of data preprocessing, model training and its validation. To facilitate the specification of loss functions, we extend the code-generating database system Umbra by an operator for automatic differentiation for use within recursive tables: With the loss function expressed in SQL as a lambda function, Umbra generates machine code for each partial derivative. We further use automatic differentiation for a dedicated gradient descent operator, which generates LLVM code to train a user-specified model on GPUs. We fine-tune GPU kernels at hardware level to allow a higher throughput and propose non-blocking synchronisation of multiple units. In our evaluation, automatic differentiation accelerated the runtime by the number of cached subexpressions compared to compiling each derivative separately. Our GPU kernels with independent models allowed maximal throughput even for small batch sizes, making machine learning pipelines within SQL more competitive.

Original languageEnglish
Pages (from-to)205-259
Number of pages55
JournalDistributed and Parallel Databases
Volume40
Issue number2-3
DOIs
StatePublished - Sep 2022

Keywords

  • Code-generation
  • GPU
  • In-database machine learning
  • SQL

Fingerprint

Dive into the research topics of 'Recursive SQL and GPU-support for in-database machine learning'. Together they form a unique fingerprint.

Cite this